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For Rd or Td, averages on balls and spheres are shown to satisfy an equivalence
relation with K-functionals that are generated by the Laplacian. The converse result
is given in terms of strong converse inequality of type A and type D for the
averages on the Ball and on the sphere, respectively. Combinations of averages on
concentric balls and spheres yield strong converse results of type B for higher levels
of smoothness. � 1999 Academic Press

1. INTRODUCTION

In this section we introduce concepts used in the paper and describe
some of the main results. We will also mention some earlier related results.

The smoothness of elements of Banach space B of functions (or distribu-
tions) on Rd or on Td is described by the K-functional K2, l( f, t2l)B is given
by

K2, l( f, t2l)B= inf
g # J(l)

(& f& g&B+t2l &2lg&B , ) (1.1)

where 2f is the Laplacian, given by 2f =�2f��x2
1+ } } } +�2f��x2

d , 2lf =
2(2l&1f ), and J(l) is an appropriate class of functions described in the
theorems in which the K-functional is used. As it will turn out, a wide
choice of classes J(l) will lead to the same K-functional.

The averaging operator (on Rd or on Td), Bt( f, x), is given for a locally
integrable function by

Bt( f, x)=
1

m(B) td |
Bt

f (x+u) dV(u), (1.2)
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where m(B) is the volume of the unit ball in Rd (or Td), Bt=[x: |x|�t]
(which implies m(Bt)=m(B) td), and dV(u) is the Lebesgue measure
element in Rd (or Td). The averaging operator, St( f, x), is given for locally
integrable functions (a.e. in x) by

St( f, x)=
1

m(S) td&1 |
St

f (x+u) d_(u), (1.3)

where m(S) is the measure of the unit sphere in Rd (the ``surface'' area),
St=[x: |x|=t] (which implies m(St)=m(S) td&1), and d_(u) is the measure
element (d&1 dimensional) on S. Sometimes when x is understood from
the context we write Bt f and St f for Bt( f, x) and St( f, x).

The basic relation between the rate of approximation of f by Bt f and by
St f and the K-functional is given by

&Bt f &f &B rK2, 1( f, t2)B #K2( f, t2)B (1.4)

and

sup
0<h�t

&Sh f &f &B rK2( f, t2)B , (1.5)

where .(t)r�(t) means that there exists a constant C for which
C&1.(t)��(t)�C.(t). The direct and converse results of (1.4) and (1.5)
are the estimate of the left hand side (of either (1.4) or (1.5)) by the right
hand side and vice versa, respectively. The converse results in (1.4) and
(1.5) are of type A and type D, respectively in the classification introduced
and discussed in [Di-Iv].

For B=Lp(Rd) or Lp(T d ) with 1<p<�, (1.5) is essentially known.
The equivalence (1.4) is new. Earlier, equivalence like (1.5) was achieved by
the first author [Di, II] for

Ah f = :
d

i=1

( f (x+ei h)+ f (x&ei h))

for any orthonormal set ei in Rd (which would imply the converse relation
in (1.5)). Equivalence like (1.4) was achieved for an average on the box
with center at x in [Di-Iv]. The present technique (which is different in
many respects from the above mentioned results) leads to equivalences
between approximation of f by combinations of Bkt f or Skt f and the
K-functional K2, l( f, t2l). The converse part of those will be of type B or D
respectively (using combinations of Bkt f and Skt f ). These results have
advantage over iterations, as the expressions estimated are simpler. In case
of estimate by St (see (1.5)), iteration would lead to many suprema on
different hj .
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Further discussions and comparisons will be carried out when our results
are established.

2. AVERAGES AND THE LAPLACIAN

In this section, we achieve some relations between the rate of approxima-
tion of f (x) by Bt( f, x) and by St( f, x) and the Laplacian of f. These results
will be crucial for the direct and the converse estimates.

Theorem 2.1. Suppose f # C2 locally ( f does not need to be bounded on
Rd). Then, for St( f, x) and Bt(g, x), given by (1.3) and (1.2), we have

St( f, x)& f (x)=
m(B)
m(S) |

t

0
{B{(2f, x) d{

=
1
d |

t

0
{B{(2f, x) d{. (2.1)

Proof. We may write for d�2

St( f, x)& f (x)=
1

m(S) td&1 |
St

( f (x+u)& f (x)) d_(u)

=
1

m(S) |S
( f (x+tu)& f (x)) d_(u)

=
1

m(S) |S
|

t

0

�
�{

f (x+{u) d{ d_(u)

=
1

m(S) |
t

0 {|S

�
�{

f (x+{u) d_(u)= d{

=
1

m(S) |
t

0
{&d+1 |

S{

�
�n

f (x+w) d_{(w) d{

(using the divergence theorem)

=
1

m(S) |
t

0
{&d+1 |

B{
2f (x+w) dV(w)

=
m(B)
m(S) |

t

0
{B{(2f, x) d{

=
1
d |

t

0
{B{(2f, x) d{.
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For d=1, St( f, x)= 1
2 ( f (x+t)+ f (x&t)), Bt( f, x)=(1�2t) � t

&t f (x+{) d{,
and 2f =f "(x), in which case direct calculation yields (2.1) as well. K

Theorem 2.2. Suppose f # C2 locally. Then,

Bt( f, x)& f (x)=
1
td |

t

0
{d&1 |

{

0
'B'(2f, x) d' d{. (2.2)

Proof. We write

Bt( f, x)& f (x)=
1

m(B) td |
Bt

( f (x+u)& f (x)) dV(u)

=
1

m(B) td |
t

0
|

S{
( f (x+u)& f (x)) d_(u) d{

=
1
td |

t

0
{d&1 |

{

0
'B'(2f, x) d' d{. K

We denote, by Ot the operator (on functions of { with parameter x)

Ot(g{(x))=
1
td |

t

0
\d&1 |

\

0
{g{(x) d{ d\. (2.3)

Using this notation, we can use Theorems 2.1 and 2.2 to obtain the
following result.

Theorem 2.3. For f # C 2l+2, we have

Bt( f, x)& f (x)& :
l

j=1

t2 j2 jf (x)
2 jj ! (d+2) } } } (d+2 j)

=Ot(Ot1
(Ot2

} } } (Otl
(B{(22l+2f, x))) } } } )), (2.4)

and

St( f, x)& f (x)& :
l

j=1

t2 j2 jf (x)
2 jj! d } } } (d+2( j&1))

=
1
d |

t

0
t1 Ot1(Ot2 } } } (Otl

(B{(2l+1f, x)) } } } )) dt1 . (2.5)

Proof. The proof is computational and follows by the use of induction
as well as estimate of

B{(2 jf, x)&2 jf (x)

116 DITZIAN AND RUNOVSKII



using (2.2) and the identity

Ot({2 j)=
1

2 j+2
1

d+2 j+2
t2 j+2 for j=0, 1, ....

To obtain (2.5), we use also the estimate (2.1). K

In fact, (2.3) is helpful so that we do not have to write so many integra-
tion signs. Without (2.3), (2.4) will take the form

Bt f (x)& f (x)& :
l

j=1

t2 j2 jf (x)
2 jj ! (d+2) } } } (d+2 j)

=
1
td |

t

0
\d&1 |

\

0
t&d+1

1 |
t1

0
\d&1

1 } } } |
tl

0
\d&1

l

_|
\l

0
{B{(2l+1f, x) d{ d\ d\1 } } } d\l dt1 } } } dtl , (2.4)$

and a similar expression can replace (2.5).
To treat higher degrees of smoothness, we define the operators Bl, t( f, x)

and Sl, t( f, x) which are essentially combinations of B jt( f, x) and S jt( f, x),
respectively. The operators Bl, t( f, x) and Sl, t( f, x) are given by

Bl, t( f, x)=
&2

\2l

l +
:
l

j=1

(&1) j \ 2l

l& j+ Bjt( f, x) (2.6)

and

Sl, t( f, x)=
&2

\2l

l +
:
l

j=1

(&1) j \ 2l

l& j+ Sjt( f, x), (2.7)

respectively.
For the direct estimate, we will need the following result.

Theorem 2.4. If f has 2l continuous derivatives, then

Bl, t( f, x)& f (x)=
2

\2l

l +
:
l

j=1

(&1) j \ 2l

l& j+
_Ojt(Ot1

(Ot2
} } } (Otl&1

(B{(2lf, x)) } } } ))) (2.8)
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and

Sl, t( f, x)& f (x)=
2

d \2l

l +
:
l

j=1

(&1) j \ 2l

l& j+

_|
jt

0
t1 Ot1

(Ot2
} } } (Otl&1

(B{(2lf, x)) } } } )) d{ (2.9)

Proof. We recall that for g(t) # C2l,

29 2l
1 g(t)# :

2l

m=0
\2l

m+ (&1)m g(t+m)

=(&1)l :
l

j=&l
\ 2l

l& j+ (&1) j g(t+l& j)

= g(2l)(%l)

with 0<%l<2l. Setting g(t)=(t&l)2r with r integer satisfying 0<r<l,
and using (2.4) and (2.5) with l1 (there) satisfying l1=l&1, we conclude
the proof of our theorem. K

Theorem 2.5. For a function f with 2l+2 derivatives locally, we have

Bl, t( f, x)& f (x)&
t2l

22

(&1)l l ! 2lf (x)
(d+2) } } } (d+2l)

=
2

\2l

l +
:
l

j=1

(&1) j&1 \ 2l

l& j+ Ojt(Ot1
(Ot2

} } } (Otl
(B{(2l+1f, x)) } } } ))).

(2.10)

Remark. One may obtain an analogue of (2.10) for Sl, t f, however, the
estimate (2.10) is used to prove a strong converse inequality of type A or
B (see [Di-Iv]) for Bl, t f &f, and this will not be possible for Sl, t f &f.
(For Sl, t f &f, such a relation fails already for d=1.) For Sl, t f &f,
a strong converse inequality of type D will be achieved as a result of the
converse estimate for Bl, t f &f.

Proof. We use (2.4) of Theorem 2.3 with the same l as in our theorem
and set g(t)=(t&l)2l for g(t) given in the proof of Theorem 2.4, and as
g(2l)(%)=(2l)!, we obtain (2.10). K

118 DITZIAN AND RUNOVSKII



3. THE DIRECT RESULT C(RD) AND C(TD)

We will prove first several estimates crucial for the proof of the direct
and the converse results. These estimates will be proved first for functions
with sufficiently many continuous derivatives. From these, we will deduce
them for various Banach spaces of functions or distributions. We now state
the estimates for general space B to avoid serious duplication. As the
operators Bt f and St f were defined only for locally integrable functions,
the inequality stated below makes sense, for the present, only for such func-
tion spaces. Later, we will extend the definitions of Bt f and St f and prove
the validity of the inequalities for some other cases.

The estimates with which we will deal are:

&Bt f &f &B�
t2

2(d+2)
&2f &B , (3.1)

&St f &f &B�
t2

2d
&2f &B , (3.2)

"Bt f &f & :
l

j=1

t2 j2 jf
2 jj ! (d+2) } } } (d+2 j)"B

�
t2l+2 &2l+1f &B

2l+1(l+1)! (d+2) } } } (d+2l+2)
, (3.3)

"St f &f & :
l

j=1

t2 j2 jf
2 jj ! d } } } (d+2( j&1))"B

�
t2l+2 &2l+1f &B

2l+1(l+1)! d } } } (d+2l)
, (3.4)

&Bl, t f &f &B�C(l, d ) t2l &2lf &B , (3.5)

&Sl, t f &f &B�C(l, d )
d+2l

l
t2l &2lf &B (3.6)

and

"Bl, t f &f &
(&1)l t2ll ! 2lf

(2l(d+2) } } } (d+2l)!)"B

�C1(l, d ) t2l+2 &2l+1f &B , (3.7)
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where

C(l, d )=
1

\2l

l +
}

1
2l&1l ! (d+2) } } } (d+2l)

:
l

j=1

j2l \ 2l

l& j+ (3.8)

and

C1(l, d )=
1

\2l

l +
}

1
2l(l+1)! (d+2) } } } (d+2l+2)

:
l

j=1

j2l+2 \ 2l

l& j+ .

We note that (3.1) and (3.2) could be construed as special cases of (3.3)
and (3.4) (for l=0), and they are special cases of (3.5) and (3.6) (for
l=1), but, being one of the basic building blocks of this paper, we stated
them separately.

Theorem 3.1. For f # C2(Rd) or f # C2(T d), (3.1) and (3.2) are valid
with B=C(Rd) or C(T d), respectively. For f # C2l+2(Rd) of f # C2l+2(Rd),
(3.3), (3.4), and (3.7) are valid with B=C(Rd) or B=C(T d). For
f # C 2l(Rd) or f # C 2l(T d), (3.5) and (3.6) are valid with B=C(Rd) or
B=C(T d). Moreover, each time f # C2m(Rd) is required, it may be replaced
by f # C 2m

loc(Rd) and 2mf # C(Rd).

Proof. Using Theorems 2.1 and 2.2, we obtain (3.1) and (3.2) when
we recall that &B{ g&C�&g&C and that (1�td) � t

0 {d&1 �{
0 ' d'=t2�2(d+2)

and (1�d ) � t
0 { d{=t2�2d. Using Theorem 2.3, formula (2.4) and (2.5) and

recalling again that &B{ g&C�&g&C , the identities

Ot(Ot1
(Ot2

} } } (Otl
(1)) } } } ))=

t2l+2

2l+1(l+1)! (d+2) } } } (d+2l+2)

and

1
d |

t

0
t1Ot(Ot2

} } } (Otl
(1)) } } } ) dt1=

t2l+2

2l+1(l+1)! d(d+2) } } } (d+2l)

(as Ot({2 j)=(1�2 j+2)(1�d+2 j+2) t2 j+2) yield our result. To prove (3.5),
(3.6), and (3.7) (the latter under the condition f # C2l+2 rather than
f # C2l), we use (2.8), (2.9), and (2.10) and the consideration above to
reduce the proof to verification of

&Ojt Ot1
Ot2

} } } Otl&1
(B{(2lf ))&�

t2lj2l

2ll ! (d+2) } } } (d+2l)
&2lf &

120 DITZIAN AND RUNOVSKII



and similar estimates. We note that we use only the exact estimate of (3.7)
for l=1 and low dimension d and hence we did not feel justified in giving
detailed computation here.

As the result uses local estimates only, the last part of the theorem is self-
evident. In fact, even if f is not bounded, the estimate (3.1), for example,
is valid. In two dimensions, we take for example f (x, y)=x2+ y2,
2f (x, y)=4 and &Bt f &f &C(Rd )�t2�2 to illustrate this point. K

We now define a K-functional

K*2, f ( f, t2l)C= inf
g # C 2l

(& f& g&C+t2l &2lg&C), (3.9)

where C is either C(Rd) or C(T d). For this K-functional, we have the
following direct result.

Theorem 3.2. For f # C(Rd) or f # C(T d),

&Bl, t f &f &C�AK*2, l( f, t2l)C (3.10)

and

&Sl, t f &f &C�AK*2, l( f, t2l)C . (3.11)

Remarks. In fact, for the direct result, (3.10) follows from (3.11).
For the converse result, we use the estimate by Bl, t f &f to obtain the
(different) estimate by Sl, t f &f. We note the important special cases for
l=1:

&Bt f &f &C�A inf
g # C2

(& f& g&C+t2 &2g&C) (3.10)$

and

&St f &f &C�A inf
g # C2

(& f& g&C+t2 &2g&C). (3.11)$

Proof. We choose g* such that g* # C2l and

& f& g*&C+t2l &2lg*&C�2K*2, l( f, t2l)C .

We estimate (Bl, t&I )( f &g*) and (Sl, t&I )( f &g*) using the bounded-
ness of Bl, t&I and of Sl, t&I on C. We estimate (Bl, t&I ) g* and
(Sl, t&I ) g* using (3.5) and (3.6). K
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4. THE DIRECT RESULT FOR CLASSES OF
NICE BANACH SPACES

We will prove the direct result (and in fact also the converse result) for
two classes of Banach spaces given in the following definitions.

Definition 4.1. A Banach space B is called a homogeneous Banach
space which we denote by B # H.B.S. if the following conditions are
satisfied:

(I) f # B then f is a locally Lebesgue integrable function on Rd or
T d;

(II) & f ( } +a)&B=& f ( } )&B (translation is an isometry);

(III) & f ( } +h)& f ( } )&B=o(1) h � 0 (translation is strongly con-
tinuous).

Definition 4.2. A Banach space B is of class N which we denote by
B # N if the following conditions are satisfied:

(I) f # B then f # S$ where S$ are the tempered distributions on Rd

or T d and B is continuously imbedded in S$;

(II) & f ( } +a)&B=& f ( } )&B ;

(III) S, the Schwartz space of test functions, is dense in the Banach
space X and X*#B (where X* is the dual to X).

The spaces Lp(Rd) # H.B.S. for 1�p<�. Lp(Rd) # N for 1�p��,
C(Rd) # H.B.S., and C(Rd) # N, Besov spaces (1�p<�) belong to H.B.S.,
the space of measures and the dual to a Besov space belong to N. The
definitions of the K-functionals below will be different, but in case both
apply, they will be shown in a later section to be equivalent. The conditions
in Definitions 4.1 and 4.2 are standard and we just grouped them together
under H.B.S. (which is standard) and N headings so that when theorems
are stated, it is clear which conditions are used.

We define also the space Br.

Definition 4.3. The space Br is the space of functions in B whose first
r strong derivatives (defined inductively) are also in B.

We can now state the main inequalities used for the direct result.
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Theorem 4.4. Suppose f # B and B is a H.B.S., then

(a) f # B2 implies (3.1) and (3.2);

(b) f # B2l+2 implies (3.3), (3.4) and (3.7);

(c) f # B2l implies (3.5) and (3.6).

Proof. For g # B* (B* the dual to B), we define

F(x)=( f (x+ } ), g( } )).

(F(x) is not exactly convolution of f and g, it lost commutativity but
gained marginally elsewhere.) The function F(x) is continuous and bounded
and, moreover, when f # Br we have F # C r.

For f # B, we have

Bt(F, x)=(Bt( f, x+ } ), g( } ))

and

St(F, x)=(St( f, x+ } ), g( } )) ,

and hence similar relations are valid for Bl, t F or Sl, tF on one side with
Bl, t f or Sl, t f on the other. For f # B2m, the relation

2mF(x)=(2mf (x+ } ), g( } ))

holds. We now use Theorem 3.1 applied to F(x) with &g&B*=1 chosen
appropriately, to obtain in a fairly standard way (see [Di, I; Di, II]) the
result for f # B. We give the method explicitly in the first of the seven cases
treated. For any g such that &g&B*=1 and f # B2, we have F # C2 and

&BtF&F&C �
t2

2(d+2)
&2F&C

�
t2

2(d+2)
sup

x
|(2f (x+ } ), g( } )) |

�
t2

2(d+2)
sup

x
&2f (x+ } )&B &g&B*

�
t2

2(d+2)
&2f &B .
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On the other hand,

&Bt f &f &B = sup
&g&B*=1

|(Bt( f, } )& f ( } ), g( } )) |

� sup
&g&B*=1

sup
x

|(Bt( f, x+ } )& f (x+ } ), g( } )) |

= sup
&g&B*=1

&Bt F&F&C .

Similarly, one can prove the other inequalities. K

We now define the K-functionals which we need by

K*2, l( f, t2l)B= inf
g # B2l

(& f& g&B+t2l &2lg&B). (4.1)

That is, (1.1) with B2l=J(l). From this, we deduce the direct result.

Theorem 4.5. For f # B and B # H.B.S., we have

&Bl, t f &f &B�CK*2, l( f, t2l)B (4.2)

and

&Sl, t f &f &B�CK*2, l( f, t2l)B . (4.3)

It is, perhaps, worth mentioning that in the basic special case when
l=1, the above yields

&Bt f &f &B�C inf
g # B2

(& f& g&B+t2 &2g&B)#CK*2( f, t2)B

and

&St f &f &B�CK*2( f, t2)B .

Proof. We note that the technique of the proof of Theorem 4.4 implies
also that Bt and St are contractions on B. Therefore,

&Bl, t f &B�\
22l

\2l

l +
&1+ & f &B and &Sl, t f &B�\

22l

\2l

l +
&1+ & f &B .

We now follow the proof of Theorem 3.2, choosing g* # B2l such that

& f& g*&B+t2l &2lg*&B�2K*2, l( f, t2l)B ,
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and estimate both Bl, t&I and Sl, t&I on f &g* using boundedness, and
on g* using (4.2) and (4.3). K

To obtain our results for spaces of type N, we note that

( f ( } +h)& f ( } ), �( } )) =o(1), h � 0 \f # S$, \� # S. (4.4)

We define

F(x)=( f (x+ } ), �( } )) = f ({x�), (4.5)

where

{x�(u)=�(u&x) (4.6)

and note, following the standard argument [St-We, p. 23], that F(x) is a
C� function. Moreover, for f # B,

|F(x)|�&F&C�& f &B &�&X . (4.7)

The average Bt f and St f were defined for locally Lebesgue integrable
functions. We can define them on S$ by

(Bt f, �) =( f, Bt�) , (St f, �)=( f, St �) , (4.8)

for all � # S (4.8) extends the definitions of (1.2) and (1.3) because of the
symmetry of Bt and St .

Moreover, since B/X*, or elements of B are functionals on X, and S is
dense in X, Bt f and St f are elements of X* As Bt or St commute with {x ,
we can obtain

Bt(F, x)=(Bt( f, x+ } ), �( } )) (4.9)

and

St(F, x)=(St( f, x+ } ), �( } )), (4.10)

and hence the density of S in X implies that Bt and St are contractions
in X*.

The operator 2m on S$ is defined as usual by

(2mf, �)=( f, 2m�) \� # S. (4.11)

This implies

2mF(x)=(2mf (x+ } ), �( } )) . (4.12)

We can now state the basic inequalities for B # N.
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Theorem 4.6. Suppose f # B/S$ and B # N with the space X of Defini-
tion 4.3 satisfying X*#B. Then, with Bt f and St f defined by (4.8) and 2lf
by (4.11), we have:

(a) 2f # X* implies (2.1) and (2.2) with the norm X*;

(b) 2l+1f # X* implies (2.3), (2.4) and (2.7) with the norm of X*; and

(c) 2lf # X* implies (2.5) and (2.6) with the norm of X*.

Remark 4.7. Because of the construction above, if Bt f or St f or 2lf are
in B, the appropriate norm & &X* can be replaced by & &B . An interesting
possible situation is when Bt f is in B and 2f only in X*. In this case,
we obtain &Bt f &f &B�(t2�2(d+2)) &2f &X* . This situation occurs, for
instance, when B=L1(T d), X=C(T d) and X*=M, where M is the space
of measures. (In this case, L1(T d) is imbedded in M in the natural way.)
The inequality

&Bt f &f &L1(T d )�
t2

2(d+2)
&2f &M

is valid, makes sense and is the crucial descriptive direct direction of the
saturation class, i. e., the class of functions for which &Bt f &f &L1(Td )=O(t2)
t � 0+.

Proof. To prove our theorem, we observe that, as in the proof of
Theorem 4.4, we have one method that fits all cases. We prove the validity
of (2.1) with the norm X*, and other parts follow in a similar fashion. We
apply (2.1) with the C norm proved in Theorem 3.1 to F(x) defined by
(4.5). The conditions apply, as F is bounded if f # B and � # S/X, F # C�

locally, and 2F # C as

|2F(x)|=|(2f (x+ } ), �) |�&2f &X* &�&X .

We now write

&Bt f &f &X* =sup [ |(Bt f &f, �) |; &�&X=1, � # S]

�
t2

2(d+2)
&2F( } )&C

�
t2

2(d+2)
&2f &X* . K
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For the measure of smoothness, we define the appropriate K-functional
for Banach space B where B # N by

Kl, 2( f, t2l)B= inf
g, 2lg # X*

(& f& g&X*+t2l &2lg&X*). (4.13)

Note that 2lg is given in the sense of (4.11).
We will show later that, for spaces B for which the two K-functionals

Kl, 2 and K*l, 2 were given, they yield essentially the same concept. We can
now state and prove the direct result for spaces B, B # N.

Theorem 4.8. For f # B/S$, B # N, we have

&Bl, t f &f &X*�CKl, 2( f, t2l)B

and

&Sl, t f &f &X*�CKl, 2( f, t2l)B .

When Bt f # B, then Bl, t f # B and &Bl, t f &f &B=&Bl, t f &f &X* , and
when St f # B, then Sl, t f # B and &Sl, t f &f &B=&Sl, t f &f &X* .

Proof. The proof follows that of Theorem 4.5 using Theorem 4.6 here
rather then Theorem 4.4. K

5. CONVERSE INEQUALITIES OF TYPES B AND D

In this section, we obtain strong converse inequalities of type B (in the
terminology of [Di-Iv]) for the approximation process Bl, t f &f. That is,
we approximate the appropriate K-functional by two terms, &Bl, t f &f &
and &Bl, t\ f &f & with some \. In the next section, we will show, for l=1
and all d, that &Bt f &f & is sufficient (that is, \=1). From the strong con-
verse inequality of type B for Bl, t f &f, we will deduce a strong converse
inequality of type D for Sl, t f &f, that is, an estimate of the K-functional
by sup0<r�t &Sl, { f &f &. We cannot strive for an estimate of the K-func-
tional by Sl, t f &f in a strong converse inequality of type B (or A), as it
is well-known not to be valid for l=1, d=1, and B=Lp , 1�p��.

As is common, a Bernstein type inequality is crucial for the converse
result. Using the methods described in details in the last section, it is
evident that the appropriate Bernstein inequality can be proved for the
space C or even just locally in that space and then copied to the general
situation.

127AVERAGES AND K-FUNCTIONALS



Theorem 5.1. For f # C(Rd) or f # C(T d) and ! any direction in Rd, we
have

} �
�!

Bt( f, x)}�d
t |St

| f (x+v)| d_(v). (5.1)

Proof. We rewrite Bt( f, x) using integration in the ! direction first and
then on B(!)=[u: u } !=0, |u|�1]. To compute (���!) Bt( f, x), we also
use the one-dimensional classical identity

d
dx |

a

&a
f (x+v) dv= f (x+a)& f (x&a)

(which is clearly valid here). Hence, we obtain

�
�!

Bt( f, x)=
1

m(B) td

�
�! |

B(!) t
|

- t2&|v|2

&- t2&|v|2
f (x+v+y!) dy dv

=
1

m(B) td |
B(!) t

[ f (x+v+- t2&|v|2 !)

& f (x+v&- t2&|v|2 !)] dv.

Therefore,

} �
�!

Bt( f, x)}� 1
m(B) td |

B(!) t
[ | f (x+v+- t2&|v| 2 !)|

+| f (x+v&- t2&|v|2 !)|] dv. (5.2)

We note now that d_(v) is bigger than its projection on E(!)=[v; v } !=0]
to obtain (5.1) from (5.2). K

From Theorem 5.1, we deduce the following corollary.

Corollary 5.2. For f # Lp(Rd) or f # Lp(T d), 1�p<�,

&grad(Bt f )&Lp
�

d
t

& f &Lp
. (5.3)

For f # C(Rd) or f # C(T d),

&grad(Bt f )&C�\2m(Bd&1)
m(Bd) + t&1 & f &C , (5.4)

where m(Bl) is the volume of the l-dimensional unit ball.
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Proof. Using (5.2) and observing that if f # C so does (���!) Bt( f, x),
and hence grad Bt( f, x), grad Bt( f, x) achieves maximum in C(T d) at
x0 # T d, and is close to supremum at a point x0 # Rd for f # C(Rd). At that
point, we estimate (���!) Bt( f, x0). We now use (5.2) again to obtain

} �
�!

Bt( f, x0) }�2m(Bd&1)
m(Bd) t

& f &C ,

where m(Bl) is the measure of the l-dimensional unit ball. We now use
(5.1) for f # C and obtain

|grad Bt( f, x)|�
d
t |St

| f (x+v)| d_(v)

and hence, for f # C,

&grad Bt( f, x)&Lp
�

d
t

& f &Lp

which implies (5.3) as C is dense in Lp , 1�p<�. K

Actually, (5.1) is valid for L� as well, and hence

&grad Bt f &��
d 3�2

t
& f &�

which is somewhat worse than (5.3) and certainly worse than (5.4), but is
of no consequence. In fact, the method of Theorem 5.6 below implies (5.3)
for L� as well.

We now obtain the following commutativity result that is more an obser-
vation than a hard earned proven theorem.

Theorem 5.3. Suppose, f has locally continuous first derivatives. Then

�
�!

Bt( f, x)=Bt \ �
�!

f, x+ (5.5)

and

grad Bt( f, x)=Bt(grad g, x). (5.6)

From these results, we deduce the following Bernstein estimate.
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Theorem 5.4. For f # C(Rd) or f # C(T d), we have

&2BtB{ f &C�
d 2

t{
& f &C . (5.7)

Proof. We first assume that f # C1, we then choose g # L1 so that
&g&1=1 and

(g, 2BtB{ f )�&2BtB{ f &C&=.

As f # C1, B{ f # C2 and hence, using Theorem 5.3, we have

(g, 2BtB{ f )=(g, Bt2B{ f )

=(Bt g, 2B{ f )=(grad Bt g, grad B{ f ).

Therefore

|(g, 2Bt B{ f ) |�&grad Bt g&1 &grad B{ f &C

�
d 2

t{
&g&1 & f &C=

d 2

t{
& f &C .

Since = is arbitrary, the result is valid for f # C1, and since C 1 is dense in
C (with the C norm), (5.7) holds. K

In fact, the estimate is somewhat better as 2m(Bd&1)�m(Bd) is smaller
than d and is asymptotically tCd 1�2 (with different C for odd and even d ).
This would improve some estimates, but would not save us from the
discussion in Section 6.

As a corollary of the above results, we obtain the following result also.

Theorem 5.5. For f # C(Rd) or f # C(T d), we have

&2lBt1
} } } Bt2l

f &C�
d 2l

t1 } } } t2l

& f &C . (5.8)

Proof. To use earlier theorems, we just have to note that for g # C2r

(g # C 2r
loc is sufficient), 2rBt g=Bt 2rg and use Theorem 5.4 repeatedly. K

From these results, we obtain, using the notation and proof in the last
section, the following theorem.

Theorem 5.6. For f # B, B # H.B.S., we have (5.1), (5.2), (5.7), and (5.8)
with the norm B replacing C. For f # B, B # N, we have (5.1), (5.2), (5.7),
and (5.8) with the X* norm, where X* is given in Definition 4.2, replacing the
norm of C.
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From the above theorems, we deduce the strong converse inequality of
type B for Bl, t f &f, and from it the strong converse inequality of type D
for Sl, t f &f. We state the result simultaneously, which is somewhat more
economical and saves us unnecessary repetition.

Theorem 5.7. Suppose f # B. Suppose also that Bl, t f and Sl, t f are given
by (2.6) and (2.7), respectively, where Bt f and St f are given by (1.2), (1.3),
and (4.8). Then:

(a) for B # H.B.S. and K*l, 2( f, t2l)B is given by (4.1), we have

K*l, 2( f, t2l)B�C(&Bl, t f &f &B+&Bl, t\ f &f &B)

and

K*l, 2( f, t2l)B�C sup
0<{�t

&Sl, { f &f &B ;

(b) for B # N, Kl, 2( f, t2l)B given by (4.13) and X* given in Definition
4.2, we have

Kl, 2( f, t2l)B�C(&Bl, t f &f &X*+&Bl, t\ f &f &X*)

and

Kl, 2( f, t2l)B�C sup
0<{�t

&Sl, { f &f &X* .

In both (a) and (b), C=C(l, d ) and \�\0=\0(l, d ) are independent of
f and B.

Proof. We first show that the strong converse inequality of type D
for Sl, t f &f follows from the strong converse inequality of type B for
Bl, t f &f. This is so, as

K*l, 2( f, t2l)B�C sup
0<'�t

&Bl, ' f &f &B

(recall \�\0). Then we observe that

sup
'�t

&Bl, ' f &f &B �sup
'�t "

1
d |

'

0
(Sl, { f &f ) {d&1 d{"B

�sup
{�t

&Sl, { f &f &B .

When the estimate is given for B # N, we use the same argument but the
operators are on � # S in the norm X, and this is done in the way that
repeats earlier arguments.
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To obtain the strong converse of type B, we define

Il, t( f )=& f&B2l+2
l, t f &+t2l &2lB2l+2

l, t f &, (5.9)

where the norm is in B or X* as appropriate. It is clear, because of (5.8)
and Theorem 5.6, that Il, t( f ) is bigger than the K-functional in question.
As &Bl, t f &�Cl & f &, we have

& f&B2l+2
l, t f &� :

2l+1

j=0

&B j
l, t( f &Bl, t f )&

�C & f&Bl, t f &.

To estimate t2l &2lB2l+2
l, t f &, we use

&Bl, t\B2l+2
l, t f &B2l+2

l, t f &A(l, d )(t\)2l 2lB2l+2
l, t f &

=C
*

(l, d )(t\)2l+2 &2l+1B2l+2
l, t f & (5.10)

which is (3.7) with Bl, \t f taking the place of Bl, t f, and B2l+2
l, t f taking the

place of f there. We observe that (5.10) and Theorem 5.6 imply that the
conditions of Theorems 4.4 and 4.6 (for (3.7)) are applicable to B2l+2

l, t f.
We utilize (5.9) and Theorem 5.6, operated on BmtBkt with 1�k, m�l,

and commutativity of 2, B' , and B% to obtain

C
*

(l, d )(t\)2l+2 |2l+1B2l+2
l, t f |�C

*
(l, d )(d{)2l+2 &2B2

lt 2
lb2l

l, t f &

�C
*

(l, d )(t\)2l \2C &2lB2l
l, t f &

with C independent of t and f.
We now choose \, so that

C
*

(l, d ) \2C�
1
2

|A(l, d)|#
1

2l+1

l !
(d+2) } } } (d+2l)

. (5.11)

We estimate

&2lB2l
l, t f &�&2lB2l+2

l, t f &+&2lB2l
l, t( f &B2

l, t f )&

�&2lB2l+2
l, t f &+A

*
t&2l & f&Bl, t f &.

Combining the above, we obtain

t2l &2lB2l+2
l, t f &�M(\)(& f&Bl, \t f &+& f&Bl, t f &)

for any \ chosen to satisfy (5.11). K
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In fact, I(l, t) was shown to be the realization of the K-functionals
K*l, 2( f, t2l)B and Kl, 2( f, t2l)B for B # H.B.S. and B # N, that is, I(l, t) was
shown to be equivalent to the K-functional. Therefore, if f # B and
B # H.B.S. and B # N, we have

Kl, 2( f, t2l)B rK*l, 2( f, t2l)B .

Changing somewhat the structure of the realization, we can have equiv-
alent with the K-functional defined by (1.1) with different J(l) (see (1.1)).

6. THE STRONG-CONVERSE INEQUALITY OF TYPE A

In Theorem 5.7, the estimate of the K-functional by the rate of
approximation involved two terms (if \0<1 there). That is, we achieved,
in the terminology of [Di-Iv], a strong converse inequality (S.C.I.) of
type B. In many cases, one term is sufficient and in such cases we have a
S.C.I. of type A. While S.C.I. of type B are sufficient for many purposes
(establishing ``realization'' and implying all classical converse inequalities,
for example), some serious efforts were made in special cases to prove the
more elegant S.C.I. of type A even when type B was available and relatively
easy (see [Di-Iv, Sect. 4; To; Kn-Zh]). In [Di-Iv, Sect. 4], an easy proof
is shown to follow a difficult estimate on constants, in [Kn-Zh], a method
to estimate the constants in case the operators are positive (with some
additional restrictions) is given, and in [To], an intricate modification of
the ``parabola'' technique is used for positive operators with the C norm.
While the problem of proving a S.C.I. of type A for Bl, t f &f, for general
l, even in case d=1, remains open, we establish such a result for l=1 and
all d.

Theorem 6.1. Suppose f # B, B # H.B.S., Bt f given by (1.2), and
K*l, 2( f, t2l)B given by (4.1). Then

K*2( f, t2)B #K*1, 2( f, t2)B r&Bt f &f &B .

Suppose f # B, B # N, Bt f given by (1.2) and (4.8), X* given in Definition
4.2 and Kl, 2( f, t2l)B given by (4.13). Then

K2( f, t2)B #K1, 2( f, t2)B r&Bt f &f &X* .

Proof. Following the steps and results of the last two sections, it is
sufficient to prove our result for B=C(C(Rd) or C(Td)). We now write

It( f )=& f&Bm+4
t f &+t2 &2Bm+4

t f & (6.1)
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and note, following the proof of Theorem 5.7, that it is sufficient to show

t2 &2Bm+4
t f &�C &Bt f &f &

for some integer m. Using (3.7) for l=1, we have

"Bt g& g+
t2

2(d+2)
2g"�

t4

8(d+2)(d+4)
&22g& (6.2)

which we apply to g=Bm+4
t f. We now use (5.5) with {=t, and obtain our

theorem following the last section for d 2�4(d+4)<1 or d<7. We note
here that, for 1�d�6 the above simple careful application of the method
in [Di-Iv] implies our result. For higher dimensions, it is sufficient to
prove, using the above mentioned technique, that for every =>0 there
exists m=m(=) such that

&2Bm
t g&�=t2 &g&. (6.3)

Once a result like (6.3) (in fact, =<4(d+4) is sufficient) is proved, a
combination of (6.2), (6.3) and

&Bk
t f &f &�C &Bt f &f &

completes the proof. Hence, we proved our result for all d, pending the
proof of (6.3) which is sufficient to show for the case B is the space C(Rd)
or C(T d) and is given a lemma below. K

The proof of (6.3) follows an ingeneous method in [Kn-Zh] which is
developed for proving such inequalities. (In [Kn-Zh], they also give a
repetition of estimates in [Di-Iv] with a change of name from S.C.I. to
lower estimate.) The conditions set in [Kn-Zh] are not exactly fitting for
our case, however the ideas given in [Kn-Zh] are used here.

Lemma 6.2. For f # C(Rd) or f # C(T d) and =>0, there exists r=r(=)
such that

&2B6r
t f &C�=t&2 & f &C . (6.4)

Proof. It is sufficient to find r so that

" �
�!

B3r
t f "C

��=
d

t&1 & f &C (6.5)

134 DITZIAN AND RUNOVSKII



as (6.5) will imply, using (5.3),

"\ �
�!+

2

B6r
t f"C

�
=
d

t&2 & f &C

from which (6.4) is immediate. We denote =1=- =�d. The derivative of the
function /(Bt) which is the kernel of Bt f is not a function, so to square it
and then divide by it, following [Kn-Zh], is not possible. We now consider
Bt( f, x) like the convolution

Bt( f, x)=
1

m(B) td |
Bt

f (x&u) du

with the kernel (1�m(B) td) /(Bt). For t=1, we have

B3
1( f, x)=| f (x&u) .(u) du,

where .(u) # L (2)
� , that is (�2��! �') .( } ) # L� for all ! and ', .(u) is

radially symmetric and supp .(u)=[u: |u|�3]. Moreover,

B3
t ( f, x)#| f (x&u) .t(u) du

#| f (x&u) . \u
t+ t&ddu. (6.6)

In other words, supp .t(u)=[u: |u|�3t]. We have .t(u)�0, as .t is a
convolution of positive functions. We also have that

| .t(x) dx=1 and |
�

�!
.t(x) dx=0

as a result of Bt 1=1. As .(u)>0 for [u: |u|<3], .(u)=0 for [u: |u|�3],
and .(x) has a zero of order 2 at [u: |u|=3], we have

| \ �
�!

.(x)+
2

.(x)&1 dx=C>0.

Substitution implies now

| \ �
�!

.t(x)+
2

.t(x)&1 dx=Ct&2. (6.7)
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Hence, while the technique of [Kn-Zh] does not work directly for Bt f,
it does work for B3

t f. We now outline the proof (6.5). We write

�
�!

B3r
t ( f, x0)=

1
r | } } } | { :

r&1

k=0

(���!) .t(xk&xk+1)
.t(xk&xk+1)

_.t(x0&x1) } } } .t(xr&1&xr)= f (xr) dx1 } } } dxr .

We observe that, in spite of the fact that ((���!) .t(x))�.t(x) is not
integrable, the integral above converges. We now use the Cauchy�Schwartz
inequality and obtain

} �
�!

B3r
t ( f, x0)}

2

�{ 1
r2 | } } } | \ :

r&1

k=0

(���!) .t(xk&xk+1)
.t(xk&xk+1) +

2

_8t(x0 , ..., xr) dx1 } } } dxr=
_{| } } } | 8t(x0 , ..., xr) | f (xr)|2 dx1 } } } dxr=

#I_J,

where 8t(x0 , ..., xr)=.t(x0&x1) } } } .t(xr&1&xr) and dxi indicates a
d-dimensional integration as xi is d-dimensional and d�d! is differentiation
in ! direction of the xk variable. From properties of .t(x), we have
8t(x0 , ..., xr)�0 and

| } } } | 8t(x0 , ..., xr) dx1 } } } dxr=1.

Hence,

J�& f &2
C .

To estimate I, we note that for 1�k+1�r

| } } } | \ �
�!

.t(xk&xk+1)+
2

(.(xk&xk+1))&2 8t(x0 , x1 } } } xr) dx1 } } } dxr

=| \ �
�!

.t(xk&xk+1)+
2

(.t(xk&xk+1))&1 dxk+1=Ct&2.
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We further observe that for 0�k, l<r and k{l we have

| } } } |
(���!) .t(xk&xk+1) (���!) .t(xl&xl+1)

.t(xk&xk+1) .t(xl&xl+1)

_8t(x0 , ..., xr) dx1 } } } dxr=0,

where (���!) .t(xm&xm+1) is differentiation in the ! direction with respect
to the xm variable.

Therefore,

I�
C
r2 t&2

and (6.5) follows for the choice C�r2�=�d which implies (6.4). K

7. CONCLUSIONS AND COMPARISONS

It is clear from arguments in Section 5 that

& f&B2k+2
m, t f &+t2l &2lB2k+2

m, t f &

with the B norm or X* norm and k, m�l will also form a ``realization'' of
the K-functional., i.e., will be equivalent to it. This can be used to give
the usual relations between Kl, 2( f, t2l)B for different l for a Banach space
over T d, the above was done in [Ch-Di] using a different realization. The
technique of using realization for comparing K-functionals for different l is
the same.

The realization will also yield a comparison with the classical K-func-
tional (B # H.B.S.) given by

K*2l( f, t2l)B= inf
g # B2l \& f& g&B+t2l sup

|!|=1 "
�2l

�!2l
g"B+ . (7.1)

For this K-functional, we have

K*l, 2( f, t2l)B �CK*2l( f, t2l)B

�C2K*l+1, 2( f, t2l+2)B (7.2)

and a similar result can be achieved for B # N. For Lp , 1<p<�, we have

K*l, 2( f, t2l)p rK*2l( f, t2l)p .
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In Section 6, a strong converse inequality of type A is discussed for
Bt f &f. For Bl, t f &f, such a result can be shown following [Di-Iv], when
d=1 and small l, that the same is true. For higher dimensions and even
for d=1 and higher l, it is open whether a S.C.I. of type A is valid. We
conjecture that it is, but our proof does not yield such a result. It should
be noted that, as Bl, t is not a positive operator, the methods used in [To]
and in [Kn-Zh] do not apply.

Using [Di-Iv, Sect. 10], one can use iterations rather than combinations
for higher degrees of smoothness. This would yield, under the condition of
Theorem 6.1 and following that theorem, that

Kl, 2( f, t2l)B r&(Bt&I )l f&X*

and

&K*l, 2( f, t2l)&B r&(Bt&I )l f&B .

We prefer combinations, as done here, to iterations since in this case we
do not average more than once. The corollaries for St of iterations would
be, under the conditions of Theorem 5.7

K*l, 2( f, t2l)B r sup
0�ti�t

&(St1
&I ) } } } (Stl

&I ) f&B

and

Kl, 2( f, t2l)B r sup
0�ti�t

&(St1
&I ) } } } (Stl

&I ) f&X* ,

that is, we have to take suprema on all ti independently. We prefer
supremum on one t and combinations rather than iterations.

In [Di-Iv, Sect. 9], averages on boxes were treated.
In [Di, II], averages on 2d points were compared to K2( f, t2). While

this is more economical information, it cannot lead to S.C.I. of type A
(or B) and the analogous results for combinations were not established.

Another comparison is with the average moduli of smoothness. It was
shown at least for B=Lp (see [Pe-Po] for instance) that, for d=1,

1
t |

t

0
&2r

u f &B dur|r( f, t)B ,

where 2r
u represents symmetric differences. From the result here, it follows

that for d=1 and r�3 we have

"1
t |

t

0
22r

u f du"B
r|2r( f, t)B
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(and similar results for odd r, r<1 and d=1 can also be shown). Of
course, since the direct result is easy in both cases, the present new equiv-
alence has more in it. Moreover, we have S.C.I. and results for d{1 as
well.
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